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Hamiltonian dynamics of dust-plasma interactions
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Hamiltonian dynamics of a collection of charged dust particles interacting with electric fields in the sheath
region of a low-temperature plasma is studied. It is shown that the wake potential is formed behind a moving
dust particle when virtual phonons are exchanged between dust grains moving relative to the ambient plasma,
while the wake potential vanishes if the dust grains are stationary with respect to the plasma. The semiclassical
Hamiltonian formulation is also applied to obtain dispersion relations for transverse and longitudinal oscilla-
tions associated with chains of dust grains levitated in the balance of gravitation and electric sheath field.
@S1063-651X~98!05903-0#
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I. INTRODUCTION

Recently, the interest in Coulomb systems of charged p
ticles has been greatly increased since the formation of C
lomb quasilattices, predicted theoretically by Ikezi@1#, in-
volving micrometer sized highly charged dust particulat
has been successfully demonstrated experimentally@2#. In
the experiments, the crystal-like structures are observe
the sheath region of a low-temperature radio-frequency
discharge plasma where there is balance between the g
tational and electrostatic forces. The distance between
dust grains is of order plasma Debye lengthlD .

Two- and three-dimensional structures as well as ph
transitions observed in the dust-plasma systems@3–7# re-
quire adequate theoretical description. One of the most
vored is the Hamiltonian formalism since it is very useful
statistical and interaction analyses as well as in numer
simulations@8#. The knowledge of the system’s Hamiltonia
is essential for a description of propagation and interaction
modes associated with the dust motion and especially for
calculation of the free energy to study phase transitions
critical phenomena.

In this paper, we derive the semiclassical Hamiltoni
which describes the interaction with external fields, t
screened Coulomb potential, and the effective interaction
dust particulates by exchanging virtual phonons. The st
of the effective interaction is motivated by the finding of
oscillating stationary wake behind a static test particle@9–
11# in the sheath region where strong ion flow exceeding
ion acoustic velocity is established@12,13#. The interaction
of the particles in the wake field is similar to the Coop
pairing of electrons in superconductors@14#, and was earlier
studied, e.g., for two-component electron-ion plasmas@15#.
Furthermore, we demonstrate how the oscillations of the d
grains, viz. longitudinal@16# and ‘‘transverse’’@17# lattice
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modes, can be obtained within the framework of the pres
formalism. The excitation of the vibrational modes, esp
cially of the ‘‘transverse’’ waves due to vertical oscillation
of the grains, may be responsible for phase transitions in
system.

II. HAMILTONIAN OF THE SYSTEM

We consider a collection of charged test particles~dust
particulates!, with the coordinatexj and the momentumpj ,
embedded in a background plasma and interacting with
gitudinal collective plasma fields. The kinetic energy of t
test particles is given by the particle Hamiltonian( j pj

2/2mj .
The interaction of test particles with the longitudinal elect
fields E(x,t) may be conveniently expressed in terms of t
longitudinal vector potentialA by replacing pj by pj
2(Zje/c)A(xj ) in the Hamiltonian. A collection of test par
ticles interacts not only with the longitudinal electric field
but also through forces derivable from the external poten
Vext such as a sheath potential. The Hamiltonian for our s
tem is thus given by@18#

H5(
j

1

2mj
Fpj2

Zje

c
A~xj ,t !G2

1E dx
E2

8p
1Vext, ~1!

where the summation is over the test particles with mas
mj , momentapj , and chargesZje, A(x,t) is the longitudinal
vector potential~in the assumed gauge the scalar potentiaf
is zero!, and E(x,t) is the longitudinal electric field. We
introduce

A~x,t !5(
k

F4pc2

Vuku2G 1/2

qk~ t !keik•x, ~2!

whereV is the volume of the system; then the electric fie
can be written as

://
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E~x,t !52
1

c

]A~x,t !

]t
52(

k
F 4p

Vuku2
G 1/2

q̇k~ t !keik•x,

~3!

with q̇k(t)[dqk(t)/dt52`2k . Thus we separate th
Hamiltonian~1! as

H5Hp1H f1HI
~1!1HI

~2!1Vext, ~4!

where the kinetic energy of the particles is given by

Hp5(
j

1

2mj
pj

2 , ~5!

the energy of the electric field is

H f5E dx
E2

8p
52

1

2(k
`k`2k , ~6!

and the interaction terms are given by

HI
~1!52(

j
(

k

Zje

mj
F 4p

Vuku2G 1/2

k•S pj2
\k

2 Dqke
ik•xj ~7!

and

HI
~2!5(

j
(

k
(
k8

2pZj
2e2k•k8

mjVukuuk8u
qkqk8e

i ~k1k8!•xj . ~8!

The short-range Coulomb static interaction term can
explicitly obtained from Eq.~4! by applying a unitary trans
formation

U5expH 2
1

h(j
(

uku.lD
21

F 4pZj
2e2

Vuku2«~k,0!
G 1/2

qke
ik•xjJ , ~9!

where thek summation is restricted foruku.lD
21 , «(k,0)

511uku22lD
22 is the static plasma form factor, andlD is

the plasma Debye length; in the case of only plasma elec
contribution we havelD5lDe5(Te/4pnee

2)1/2, whereTe ,
ne , and2e is the electron temperature, density, and char
respectively. Thus we find

H→U21HU5Hp1H f1HI
~1!1HI

~2!

1Vext1
1

2 (
uku.lD

21
(
iÞ j

4pe2ZiZje
ik•~xi2xj !

Vuku2«~k,0!
,

~10!
e

n

e,

whereHp , H f , HI
(1) , andHI

(2) are given by Eqs.~5! to ~8!
with the k summation restricted touku,lD

21 . We neglected
terms including the factor$121/@«(k,0)#1/2% for uku.lD

21

since the Debye screening makes the plasma wave prop
tion impossible in the wave number rangeuku.lD

21 ~the ef-
fects of dynamic screening will be included below!. Such a
procedure of the transformation introduces the wave num
domain appropriate for the interactions in consideration, a
it is similar to that invoked in Ref.@18#.

We can now write the Hamiltonian appropriate to a set
harmonic oscillators, which represent the collective field
the plasma wave as

Hosc5H f1HI
~2!5

1

2(k
S `k`k* 1(

j
vp j

2 qkqk* D , ~11!

where we have takenk52k8 for HI
(2) . Here,`k* 52`2k

andqk* 52q2k because of the reality condition for the ele
tric field, andvp j5(4pZj

2e2/Vmj )
1/2 is the frequency of the

collective particle motion. Taking into account the dynam
cal screening of the wave fields and setting

`k5 iA \vk

~]v«/]v!vk

~a2k1ak* !,

qk5A \

vk~]v«/]v!vk

~ak2a2k* !, ~12!

we obtain

HI
~1!52(

j
(

k

Zje

mj
F 4p\

Vuku2vk~]v«/]v!vk

G 1/2

3Fk•S pj2
\k

2 Dak~ t !eik•xj

1e2 ik•xjak* ~ t !k•S pj2
\k

2 D G ~13!

as well as

Hosc5(
k

\vk

~]v«/]v!vk

~ak* ak1akak* !

1(
k

\

2vk~]v«/]v!vk
S (

j
vp j

2 2vk
2D

3~ak* ak1akak* 2aka2k2a2k* ak* !, ~14!

where«5«(k,v) is the linear plasma dielectric permittivity
Solution of the dispersion equation«(k,v)50 gives the
eigenfrequency of the plasma wavesv5vk . Below, we as-
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sume that there is no plasma wave damping, and conside
positive wave eigenfrequencies,vk.0.

Next, we apply the canonical transformations

xj5e2~ i /\!SX je
~ i /\!S, pj5e2~ i /\!SPje

~ i /\!S, . . . ,
~15!

where

S5 i(
j

(
k

~a j kAke
ik•X j2e2 ik•X jAk

†a j k! ~16!

and

a j k5
Zje

mj
F 4p\

Vuku2vk~]v«/]v!vk

G 1/2

3
k•~Pj2\k/2!

vk2~k•Pj /mj !1~\uku2/2mj !
~17!

to obtain the set of new variables (X j ,Pj ,Ak ,Ak
† ,H) from

(xj ,pj ,ak ,ak* ,H). We have
the
pj5Pj1S 2

i

\ D @S,Pj #1
1

2S 2
i

\ D 2

†S,@S,Pj #‡1•••

5Pj2(
k

k~a j kAke
ik•X j1eik•X jAk

†a j k!1•••, ~18!

ak5Ak1S 2
i

\ D @S,Ak#1
1

2S 2
i

\ D 2

†S,@S,Ak#‡1•••

5Ak1
1

\(
j

e2 ik•X ja j k1•••, ~19!

ak* 5Ak
†1S 2

i

\ D @S,Ak
†#1

1

2S 2
i

\ D 2

†S,@S,Ak
†#‡1•••

5Ak
†1

1

\(
j

a j ke
ik•X j1•••, ~20!

and
l

eik•xj5eik•X j2S 2
i

\ D @S,eik•X j #1
1

2S 2
i

\ D 2

†S,@S,eik•X j #‡1•••

5eik•X j2(
k8

S 4pZj
2e2vk

V\uk8u2~]v«/]v!vk8

D 1/2F S 1

vk82~k8•Pj /mj !1~\uku82/2mj !

2
1

vk82~k8•Pj /mj !1~\uk8u2/2mj !1~\k8•k/mj !
D Ak8e

i ~k1k8!•X j

1Ak8
† e2 ik8•X jS 1

vk82~k8•Pj /mj !1~\uk8u2/2mj !1~\k•k8/mj !
2

1

vk82~k8•Pj /mj !1~\uk8u2/2mj !
D eik•X jG1•••,

~21!

where @A,B#[AB2BA is the commutator ofA and B. We note that thek summation is restricted foruku,lD
21 unless

otherwise specified. It is straightforward to show that

(
j

pj
2

2mj
1(

k

\v

2
~ak* ak1akak* !5(

j

Pj
2

2mj
1(

k

\v

2
~Ak

†Ak1AkAk
†!

1(
j k

Zjej

mj
S 4p\

Vuku2vk~]v«/]v!vk
D 1/2Fk•S Pj2

\k

2 DAke
ik•X j1e2 ik•X jAk

†k•S Pj2
\k

2 D G .
~22!

Our new canonically transformed interaction Hamiltonian includes the static Debye contributionHD , the external potentia
Vext, the termHI

(1) corresponding toHI
(1) , and the interaction parts ofHP andHosc in the lowest order, i.e.,

Hint5HD1Vext1HI
~1!1SHP2(

j

Pj
2

2mj
D 1FHosc2(

k

\vk

~]v«/]v!vk

~Ak
†Ak1AkAk

†!G , ~23!

where
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HD5
1

2 (
uku.lD

21
(
iÞ j

4pe2ZiZje
ik•~Xi2X j !

Vuku2«~k,0!
. ~24!

The last three terms in Eq.~23! will be combined and expressed as

V eff52(
iÞ j

(
k

2pZiZje
2

Vmimj uku2vk~]v«/]v!vk

Fk•S Pi2
\k

2 D k•S Pj1
\k

2 D 1

vk2~k•Pj /mj !2~\uku2/2mj !
eik•~Xi2X j !

1e2 ik•~Xi2X j !k•S Pj1
\k

2 D 1

vk2~k•Pj /mj !2~\uku2/2mj !
k•S Pi2

\k

2 D G . ~25!

Here, the effective interaction between particles through the exchange of virtual plasma waves or quasiparticles is d
We note that the dynamical collective effect of background plasma is included through the dielectric function«(k,v). Below,
we discuss some of the situations described by this interaction Hamiltonian.

III. EFFECTIVE POTENTIAL

Consider a pair of dust particles interacting via the plasma ion-acoustic waves. Within the acoustic frequency ra
plasma dielectric permittivity is given by

«~k,v!5111/uku2lD
2 2vpi

2 /v2, ~26!

wherelD5lDe is the electron Debye length andvpi5(4pnie
2/mi)

1/2 is the ion plasma frequency (mi , ni , ande are the ion
mass, density, and charge, respectively!. Solution of the dispersion equation«(k,v)50 gives the dispersion of the plasm
ion-acoustic mode

vk5ukuCs /A11uku2lD
2 , ~27!

whereCs5(Te /mi)
1/2 is the ion acoustic velocity. Let a pair of dust grains have massesm1 ,m2 and chargesQ15Z1e,Q2

5Z2e, and consider the quasiclassical limit\→0. When the particles move in the same directionZ with velocitiesv1 andv2,
we find that the effective potential energy derived from the interaction Hamiltonian is given by

V 12
eff52 (

uku,lD
21

4pQ1Q2kZ
2v1v2

V~ uku21lD
22!

S 1

vk
22kZ

2v1
2

1
1

vk
22kZ

2v2
2D eik•~X12X2!. ~28!

Letting V→` and(k→V*d3k/(2p)35V@*dk' /(2p)2#*dkZ/2p, we find

V 12
eff52

Q1Q2v1v2

~2p!2 E dkZdk'

kZ
2lD

2 exp~ ik•R!

11uku2lD
2 F 1

vk
22~kZv2!2

1
1

vk
22~kZv1!2G , ~29!

where the integration is limited in the rangeuku,lD
21 , R5X12X2, andk25kZ

21uk'u2. We see that

V 12
eff50 ~30!

for v150 or v250 and

V 12
eff5Q1Q2E dkZdk'

2p2

lD
2 exp~ ik•R!

11k2lD
2 F11

vk
2

kZ
2v0

22vk
2

1
1

2S dv
v0

D 2S 11
vk

2~3kz
2v0

22vk
2!

~vk
22kz

2v0
2!2 D G ~31!

for v15v0 ,v25v06dv(udvu!uv0u). In the limit of dv→0, we obtain

V 12
eff5Q1Q2E dkZdk'

2p2

lD
2 exp~ ik•R!

11k2lD
2 F11

k2lD
22M 22

~kZ
21k0

2!~kZ
22k1

2!
G , ~32!

where M5uv0u/Cs is the Mach number andk0,1
2 56@(12M 22)lD

221uk'u2#/21$uk'u2M 22lD
221@(12M 22)lD

22

1uk'u2#2/4%1/2. The vanishing effective potential was investigated in the context of the study of molecular-ion beams
acting with metals@19#. The effective potential, Eq.~32!, is in agreement with the wake potential derived for the scree
electrostatic potential due to a test dust particle in the ion flow@11#. It is noteworthy that the effective potential vanishes wh
one dust grain is stationary while another dust grain is moving with respect to the ambient plasma. The exchange of
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between a pair of dust grains is only possible when a pair of dust grains is moving together~or alternatively they are stationar
in the presence of plasma flow!. The earlier work on the wake potential@9–11# could not reveal such a situation, since t
wake potential was calculated by a screened potential due to a single test dust particle without the presence of neighb
particles. The Hamiltonian dynamics is thus essential to find the wake potential if dust particles move with different ve

Note that the addition of the first term in the square brackets in Eq.~32! andHD , given by Eq.~24!, forms the complete
Debye static interaction potentialVD5S iÞ jV i j

D/2, where

V i j
D5(

k

4pQiQje
ik•~Xi2X j !

Vuku2«~k,0!
. ~33!

Here, we note that the summation is within the whole range of possible values ofk. For M.1, the contribution from the poles
at 6k1 in thekZ plane gives the oscillatory wake potential@9–11# while the poles atkZ56 ik0 provide the nonoscillating part
which modifies the static Debye shielding scalelD for moving particles.

Assuming a cylindrical symmetryk•R5uk'uR'cosf1kZZ and integrating overkZ in Eq. ~32! we find the approximate
expression for the oscillatory interaction potential energy at the distanceR'.lD and uZu.lDAM221 as given by

V 12
W~R' ,Z!.

2Q1Q2

12M 22
A lD

2pR'
H cos@~p/4!1~Z2 /lDAM221!#

Z2
1

cos@~p/4!2~Z1 /lDAM221!#

Z1
J , ~34!
-
e.
,

via

tri
-
n
s
nt
th
ne
e

e
th

field

s,

ion

of
er-

of
re
whereZ6[uZu6R'AM221.0. We note that the oscillat
ing potential exists only in the wake of the test particle, i.
for Z,0 and uZu.R'AM221 @10,11#. On the other hand
for R',lD and uZu.lDAM221, we recover@9#

V 12
W~R'50,Z!.

2Q1Q2

uZu
cos~ uZu/lDAM221!

12M 22
. ~35!

The Debye static interaction potential given by Eq.~33! can
be expressed explicitly as

V i j
D5

QiQj

uX i2X j u
e2uXi2X j u/lD. ~36!

IV. LATTICE OSCILLATIONS

Consider oscillations of the dust particles interacting
the potentialHint . Suppose dust particles of chargeQ are
levitating with the balance of gravity and the sheath elec
field in the verticalZ direction. For linear modes, their lon
gitudinal and transverse vibrations are decoupled and ca
considered separately. In the case of the vertical vibration
the particles in theZ direction, we have to take into accou
the potential well appearing as a result of the gravity and
sheath electric field. For the oscillations in a horizontal o
dimensional chain, we take into account the Debye and
ternal potentials. The equation of motion is given by

Ṗj ,Z52
]

]Zj
S (

i
V i j

D1V j
extD , ~37!

where the dot denotes the time derivative,V i j
D is given by

Eq. ~36!, andV j
ext is the external potential resulting from th

gravity and the sheath electric field and may be given, in
parabolic approximation, as

V j
ext5

1

2
g~dZj !

2. ~38!
,

c

be
of

e
-
x-

e

Here,dZj is the small deviation from the equilibrium andg
is the constant defined by the slope of the sheath electric
at the equilibrium position of dust particles@17#. If we con-
sider interaction only with the next neighboring particle
i.e., i 5 j 21 and j 11, the equation of motion becomes

Ṗj ,Z5
QE~r 0!

r 0
~2dZj2dZj 212dZj 11!2gdZj , ~39!

where

E~r 0!5
Q

r 0
2S 11

r 0

lD
De2r 0 /lD ~40!

and r 05uX j2X j 21u5uX j 112X j u. Noting that

Ṗj ,Z5Md

d2

dt2
dZj , ~41!

whereMd is the mass of the dust grain and setting

dZj5dZ0e2 i ~vt2 jkr 0!, ~42!

we find the dispersion relation for the transverse oscillat
of horizontal lattice chain as

v25
g

Md
2

4Q2

Mdr 0
3S 11

r 0

lD
DexpS 2

r 0

lD
D sin2S kr0

2 D . ~43!

This is the dispersion relation for the transverse oscillation
the horizontal lattice chain. A detailed study on this disp
sion relation is reported by Vladimirovet al. @17#.

In the case of longitudinal motions in the arrangement
a horizontal one-dimensional chain, their oscillations a
governed by a Hamilton equation,

Ṗj ,X52
]

]Xj
(

i
V i j

D , ~44!
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which, after taking the relevant neighbor interactions as
the transverse oscillation, becomes

Ṗj ,X5QS ]E

]r D
r 0

~2dXj2dXj 212dXj 11!, ~45!

where

S ]E

]r D
r 0

52
2Q

r 0
3 S 11

r 0

lD
1

r 0
2

2lD
2 D e2r 0 /lD. ~46!

Noting that

Ṗj ,X5Md

d2

dt2
dXj , ~47!

and setting

dXj5dX0e2 i ~vt2 jkr 0!, ~48!

we obtain the dispersion relation for the longitudinal oscil
tion as

v25
2Q2

Mdr 0
3S 11

r 0

lD
1

r 0
2

2lD
2 D expS 2

r 0

lD
D sin2S kr0

2 D ,

~49!

which agrees with the equation derived by Melandso” by the
Green’s function method@16#.

Next consider the case of a one-dimensional vertical ch
when particles are placed one above another. A vertical e
librium of N particles will be established in the chain. R
cently the vertical chain of dust particles has been obser
in the experiments in@20#. The vertical motion in the vertica
arrangement of three dust particles separated by the e
distance is, taking only nearest-neighbor interactions and
suming no ion flows, described by

Ṗ1,Z52gdZ12
]V 12

D

]Z
,

Ṗ2,Z52gdZ22
]V 21

D

]Z
2

]V 23
D

]Z
, ~50!
er

.

r

-

in
i-

d

ual
s-

Ṗ3,Z52gdZ32
]V 32

D

]Z
.

In the linear approximation, expanding Eq.~50! in small per-
turbations of the equilibrium and taking into account t
equal separation of the grains, we find the dispersion eq
tion

~2v2Md1g!@~2v2Md1g12gD!22gD
2 #50, ~51!

where

gD5U]2V 12
D

]Z2 U'U]2V 23
D

]Z2 U . ~52!

Thus we obtain the three characteristic frequencies of os
lations in the vertical chain of three dust grains

v1
25

g

Md
, v2

25
1

Md
~g1gD!, v3

25
1

Md
~g13gD!.

~53!

Here, the first frequency corresponds to all three partic
moving together with equal amplitudes, and the second
third frequencies correspond to different relations betwe
phases and amplitudes of the particle vibrations.

V. CONCLUSIONS

In summary, we have derived the semiclassical interac
Hamiltonian for the ensemble of dust particles in a plasm
The Hamiltonian describes the effective potential produc
by a pair of moving dust grains due to their interaction w
the external fields, Debye-Hu¨ckel screening potential, an
the exchange of virtual phonons in the ion flow. It is show
that the wake potential will vanish if one of the pair of du
particles is stationary with respect to the ambient plasm
The Hamiltonian is also applied to oscillations in a coupl
system of dust particles, and characteristic frequencies
both longitudinal and transverse modes are derived.
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