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Hamiltonian dynamics of dust-plasma interactions
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Hamiltonian dynamics of a collection of charged dust particles interacting with electric fields in the sheath
region of a low-temperature plasma is studied. It is shown that the wake potential is formed behind a moving
dust particle when virtual phonons are exchanged between dust grains moving relative to the ambient plasma,
while the wake potential vanishes if the dust grains are stationary with respect to the plasma. The semiclassical
Hamiltonian formulation is also applied to obtain dispersion relations for transverse and longitudinal oscilla-
tions associated with chains of dust grains levitated in the balance of gravitation and electric sheath field.
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[. INTRODUCTION modes, can be obtained within the framework of the present
formalism. The excitation of the vibrational modes, espe-
Recently, the interest in Coulomb systems of charged parcially of the “transverse” waves due to vertical oscillations

ticles has been greatly increased since the formation of Co®f the grains, may be responsible for phase transitions in the
lomb quasilattices, predicted theoretically by Ikézi, in-  System.
volving micrometer sized highly charged dust particulates,
has been successfully demonstrated experimenfallyIn
the experiments, the crystal-like structures are observed in IIl. HAMILTONIAN OF THE SYSTEM

the sheath region of a low-temperature radio-frequency gas e consider a collection of charged test partiolgast
discharge plasma where there is balance between the gra‘ﬂarticulateﬁs with the coordinate; and the momenturp; ,
tational and electrostatic forces. The distance between theypedded in a background plasma and interacting with lon-
dust grains is of order plasma Debye lengi. gitudinal collective plasma fields. The kinetic energy of the
Two- and three-dimensional structures as well as phasgg; particles is given by the particle Hamiltonizpp?/2m; .
transitions observed in the dust-plasma syst¢s/] re-  1g jnteraction of test particles with the longitudinal electric

quire adequate theoretical description. One of the most fage |45 £(x,t) may be conveniently expressed in terms of the
vored is the Hamiltonian formalism since it is very useful in | ngitudinal vector potentialA by replacing p; by p;
i j

statistical and interaction analyses as well as in numericaf(z_e/C)A(X_) in the Hamiltonian. A collection of test par-
i i '

simulations8]. The knowledge of the system’s Hamiltonian gcles interacts not only with the longitudinal electric fields,

is essential for a description of propagation and interaction of, s 454 through forces derivable from the external potential
modes associated with the dust motion and especially for th&

; " oxt SUCh as a sheath potential. The Hamiltonian for our sys-

ca}I_cuIanon of the free energy to study phase transitions an m is thus given by18]
critical phenomena.

In this paper, we derive the semiclassical Hamiltonian,
which describes the interaction with external fields, the 1 Zje
screened Coulomb potential, and the effective interaction of H=2 sm| PiT AKX
dust particulates by exchanging virtual phonons. The study . !
of the effective interaction is motivated by the finding of an
oscillating stationary wake behind a static test partjf@e  where the summation is over the test particles with masses
11] in the sheath region where strong ion flow exceeding then; , momentep; , and chargeZ;e, A(x,t) is the longitudinal
ion acoustic velocity is establishéd2,13. The interaction vector potentialin the assumed gauge the scalar potengial
of the particles in the wake field is similar to the Cooperis zerg, and E(x,t) is the longitudinal electric field. We
pairing of electrons in superconductdtst], and was earlier introduce
studied, e.g., for two-component electron-ion plasiids.
Furthermore, we demonstrate how the oscillations of the dust
grains, viz. longitudinal[16] and “transverse”[17] lattice
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with gy (t)=dge(t)/dt=—p _.
Hamiltonian(1) as

Thus we separate the

H=Hp+Hi+HY+H{?+ Vey, (4)
where the kinetic energy of the particles is given by
1
=>» — p?
Hp_; 2m] p] ’ (5)
the energy of the electric field is
E2 1
Hf:Jd@:—g k9 k. (6)

and the interaction terms are given by

1/2
4
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Zje
m;

HY=-3 3

k hk ik-x:
~ 4 I PiTakeT (7)

and

27Z%e%k -k’ o
HEZ)ZE >y — ; Ok €' €KX (8)
T K % mVIK[|K'|

The short-range Coulomb static interaction term can be ]

explicitly obtained from Eq(4) by applying a unitary trans-
formation

1
U=exp{ —52

where thek summation is restricted folk|>Xp*, &(k,0)
=1+]|k| 2\, ? is the static plasma form factor, and, is

47Z7e?

V[k|?e(k,0)

12
leik'xj] , (9

-1
[k|>\p

the plasma Debye length; in the case of only plasma electron

contribution we have\p=2X\pe=(T/4mn.e?)*?, whereT,,

ne, and—e is the electron temperature, density, and charge,

respectively. Thus we find
H—U HU=Hp+H+H{Y+H{?

1 47e?Z7,Z ek i)
+Vext+_ 2 L !
KI>npt 17

V|k|2¢(k,0)

2

(10
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whereH,,, H¢, H™, andH{®) are given by Egs(5) to (8)
with the k summation restricted ttk|<\;'. We neglected
terms including the factof1—1/[s(k,0)]¥3 for |k|>xpt
since the Debye screening makes the plasma wave propaga-
tion impossible in the wave number rangg>\," (the ef-
fects of dynamic screening will be included belovBuch a
procedure of the transformation introduces the wave number
domain appropriate for the interactions in consideration, and
it is similar to that invoked in Ref.18].

We can now write the Hamiltonian appropriate to a set of
harmonic oscillators, which represent the collective field of
the plasma wave as

1
Hosc:Hf"'HEZ):EEk: WkW:—’_; wIZqukq: , (1)

where we have takek=—k’ for H{?). Here,pi=—p_,
andq; = —qg_ because of the reality condition for the elec-
tric field, andwy,;= (47wZ7e?/Vm)2is the frequency of the
collective particle motion. Taking into account the dynami-
cal screening of the wave fields and setting

ﬁwk
((?wsl(?w)wk

/ f
_ ok
= wk(&ws/&w)wk(ak k),

(@k:i (a_k‘f'aﬁ),

(12

we obtain

47h vz
V|k|Za)k(é’ws/&w)wk

Z.e
REEIP =

kM

-3

hk

+e K Xgf (t)k- (13

as well as

h(l)k
" (&ws/&w)wk

+> h

R Za)k(&ws/ﬁw)wk

Hose= (a’l: axt+ aka,lz )

PR

X (ay a+akag —aa_—ar,ay), (19

wheree = g(k, ) is the linear plasma dielectric permittivity.
Solution of the dispersion equatiosn(k,w)=0 gives the
eigenfrequency of the plasma wawes o, . Below, we as-
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sume that there is no plasma wave damping, and consider the i 1 i\2
positive wave eigenfrequencies,>0. pj=Pj+| — g)[S, Pil+ 5| — g) [S[SP1]+---
Next, we apply the canonical transformations
_ ik Xi 1 ik Xipt
x,= e~ (/1S glilh)S . — g~ (ISP glilt)s _Pj_; K(ajAe™ "i+e™ A+, (18)
(15
where i 1/ i\2
ag= A+ ( - g)[S,Ak]ﬂL 5l g) [S[SAJI+---
SzlE 2 (aikAkeik'Xi—efik'XiAlajk) (16) 1 ‘
! K :Ak+ gz: eilk'xjajk‘F"', (19)
and :
Zie Amh 12 . .
ajk=4 . + | + 1 | 2 +
m; | VIk[?w(dwel dw),, ac=ActH| — 7 |ISAd+ 35| -7 [S[SAJ]+---
k-(P,—#%k/2 1 :
X ( : ) 2 (17) :Al'i'_z aikelk'xj+-~-, (20)
o~ (k- Py /my) + (41 ]k|?/2m)) A
to obtain the set of new variableX(,P; A, A, H) from
(%j,pj ax,ai ,H). We have and

- S 2
eik»xj:eik-xj_(_fll_)[s’eik-xj]_l_% _%) [S’[S,eik-xj]]_}_...

2 2 1/2
kX 47sze o 1
K Vﬁ|k’|2(o7w8/ﬁw)wk, wy— (K’ - P /my) + (A]K|"2/2m;)
_ 1 )A ,ei(k+k’)~xj
- 1 1 .
+Al,e"k 'Xi( — )e'k'xj +.o.n,
oy — (K" Py my) + (A]K'|22m) + (fik-K'Im;) @ — (K- Pj/my) +(%]k’[2/2m;)

(21)

where[A,B]=AB—BA is the commutator oA and B. We note that thék summation is restricted fojk|<\Ap* unless
otherwise specified. It is straightforward to show that

2p12+2ﬁw ractaa))= 2, PLeS RO atas Al
: ij = 2 (akak akak)— j ij » 2( KAk k k)
1/2
Ze Amh fik . . hk
3 o ipanesin) [ s nmie -]
ik m \V|k|2wk(c9w8/(9w)wk 2 2

(22

Our new canonically transformed interaction Hamiltonian includes the static Debye contrié{fipthe external potential
Vext, the termH(!) corresponding td4("), and the interaction parts 6{p and M, in the lowest order, i.e.,

p? hw
j k
Hio=Ho+ Vet HiY 4| Mo 20 oo || Hose 2 505 5 0w)wk(AEAk+AkAb}. (23

where
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ol > 4me?z,z;e X7 X)) 24
D™ 5
2t 1 VK[ (k,0)
The last three terms in Eg23) will be combined and expressed as
27Z,Z;€* ik 1 .
pefi—_> > 727 - k.(Pi——)k-<Pj+—) : ik (Xi=X;)
F K vmm k2o dwsldo), | 2 2 | e (k-P; 1my) — (A |k|Z/2my)
_ hk 1 hk
+e'k'<xixj)k-(Pj+7> 5 k-(Pi—7> . (25)

Here, the effective interaction between particles through the exchange of virtual plasma waves or quasiparticles is described.
We note that the dynamical collective effect of background plasma is included through the dielectric fa(ktioh Below,
we discuss some of the situations described by this interaction Hamiltonian.

Ill. EFFECTIVE POTENTIAL

Consider a pair of dust particles interacting via the plasma ion-acoustic waves. Within the acoustic frequency range, the
plasma dielectric permittivity is given by

e(k,)=1+1/[k|2AE - w5/ ?, (26)

where\ = \p is the electron Debye length amq)i=(47-rnie2/mi)1’2 is the ion plasma frequencyr(, n;, ande are the ion
mass, density, and charge, respectiveBolution of the dispersion equatiar{k,»)=0 gives the dispersion of the plasma
ion-acoustic mode

wi=|K|Cs/ 1+ K|2\3, (27)

where C,=(T./m;)¥? is the ion acoustic velocity. Let a pair of dust grains have massgs, and charge®;=2,€,Q,
=Z,e, and consider the quasiclassical lifiit-0. When the particles move in the same direcZowith velocitiesv; andv,
we find that the effective potential energy derived from the interaction Hamiltonian is given by

4 k2v v 1 1
Vlffzf:_ E ngz Zfi 2( 2 2 2+ 2 2.2
k| <ng? V([k[*+1p%) | wg—kZv] wi—kZv;

) elk (Xa=X2), (28)

Letting V—c and S, — V[ d3k/(2m)3=V[fdk, /(27)2]fdk,/2m, we find

kah3exp(ik-R) 1 1
Vifzf:_Qleszf k,dk, ZRD M i [ . +— ' (29)
(2m)? 1+]k[°\p {“’k_(kzvz)2 wi—(kzv1)?
where the integration is limited in the ranfjd<Ap*, R=X;—X,, andk?=k3+ |k, |2. We see that
V=0 (30)
forv,=0 orv,=0 and
e Qlef dk,dk, )\ZDexp(ik-R)[lJr 02 +E(5_v)2 w0 2(3k202— w?) a1
2 272 1+k2\3 { k2vi—w? 2\vo (02— k2v3)?
for vy=vg,v,=vo* dv(|Sv|<|vyl). In the limit of Sv—0, we obtain
dk,dk, Aiexpik-R) k2N 5 %M 2
V$S=Q1Q2f e " — | (32
272 1+KAL | (IKR+KD)(K2-KD)

where M=|vo|/Cs is the Mach number andk3,==[(1—M 2)Ap?+]|k, [21/2+{k,[>M 2\ g%+ [(1-M ?)\p?

+]k, |?1%14}*2. The vanishing effective potential was investigated in the context of the study of molecular-ion beams inter-
acting with metalg§19]. The effective potential, Eq32), is in agreement with the wake potential derived for the screened
electrostatic potential due to a test dust particle in the ion fibi. It is noteworthy that the effective potential vanishes when

one dust grain is stationary while another dust grain is moving with respect to the ambient plasma. The exchange of phonons



3396 OSAMU ISHIHARA AND SERGEY V. VLADIMIROV 57

between a pair of dust grains is only possible when a pair of dust grains is moving togetakernatively they are stationary

in the presence of plasma flowrhe earlier work on the wake potent{@-11] could not reveal such a situation, since the

wake potential was calculated by a screened potential due to a single test dust particle without the presence of neighboring dust

particles. The Hamiltonian dynamics is thus essential to find the wake potential if dust particles move with different velocities.
Note that the addition of the first term in the square brackets in(E2.andHp, given by Eq.(24), forms the complete

Debye static interaction potentizh=2.;V j; D2, where

4mQQe i)
VyP= . 33
N ; V|k|2(k,0) 33

Here, we note that the summation is within the whole range of possible vallke$of M>1, the contribution from the poles
at =k, in thek, plane gives the oscillatory wake potenfil-11] while the poles ak,= * ik, provide the nonoscillating part,
which modifies the static Debye shielding scalg for moving particles.

Assuming a cylindrical symmetrit- R=|k, |R, cosp+k,Z and integrating ovek, in Eq. (32) we find the approximate
expression for the oscillatory interaction potential energy at the dist&nce\, and|Z|>ApM?—1 as given by

2Q1Q2 cog (mld)+(Z_ INpyYM?— )] cod (m/4)—(Z4 INpYyM?=1)]
ViR, 2Z)= 2le

Z_ Z, ’

(34

whereZ.=|Z|*R, YMZ=1>0. We note that the oscillat- Here, 5Z; is the small deviation from the equilibrium and
ing potential exists only in the wake of the test particle, i.e.,is the constant defined by the slope of the sheath electric field
for Z<0 and|Z|>R, JyMZ=1 [10,11]. On the other hand, at the equilibrium position of dust particlgs7]. If we con-
for R, <\p and|Z|>)\DJV2—_1, we recovef9] sider interaction only with the next neighboring particles,
i.e.,i=j—1 andj+1, the equation of motion becomes
2Q;Q; cog|Z|/NpYM*—1)

VIR, =02)= . (35 . QE(ro)
1R ) 1Z| 1-M 2 39 P z= s © (262~ 6Z; 1~ 6Z;, 1)~ v5Z;, (39)
The Debye static interaction potential given by E8g) can where
be expressed explicitly as
QiQj - < To| - \p
D_ i X=X/ E(r 1+ e 'o 40
2 X = X|e = Xi=Xjlnp, (36) (ro) 2 o (40)

IV. LATTICE OSCILLATIONS andro=[X;=Xj -4 =|X; 1= X;|. Noting that
Consider oscillations of the dust particles interacting via P =M d—zaz-
the potentialH;,;. Suppose dust particles of char@eare 1z 442
levitating with the balance of gravity and the sheath electric

field in the verticalZ direction. For linear modes, their lon- whereM, is the mass of the dust grain and setting
gitudinal and transverse vibrations are decoupled and can be

considered separately. In the case of the vertical vibrations of O0Zj=6Zye~ (wt=jkro) (42

the particles in th& direction, we have to take into account

the potential well appearing as a result of the gravity and thave find the dispersion relation for the transverse oscillation
sheath electric field. For the oscillations in a horizontal onef horizontal lattice chain as

dimensional chain, we take into account the Debye and ex-

i (41

ternal potentials. The equation of motion is given by wie L 4Q? 1+ f_o F{— f_o) sinz(ﬁ) 43
Mg Mgrd Ap Ap 2 )
P = v+ 3
1.2 z?Z E ' S This is the dispersion relation for the transverse oscillation of

the horizontal lattice chain. A detailed study on this disper-
where the dot denotes the time denvatl\)eD is given by  sion relation is reported by Vladimirost al. [17].
Eq.(36), andV etis the external potential resultmg from the In the case of longitudinal motions in the arrangement of
gravity and the sheath electric field and may be given, in th@ horizontal one-dimensional chain, their oscillations are
parabolic approximation, as governed by a Hamilton equation,

1% fXIZ%y( 6Z;)2. (38) Pj x= E Vi, (44)
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which, after taking the relevant neighbor interactions as for ) EY, 52
the transverse oscillation, becomes Psz=—vy6Z3— 07
) JE i T ; i
—0l = _ _ In the linear approximation, expanding E&0) in small per-
P x= 26Xi— 6Xi_1— 6Xi 1 1), 45 . g T
IX Q( ar ). (20X -1 j+1) (45) turbations of the equilibrium and taking into account the
0 e_qual separation of the grains, we find the dispersion equa-
where tion
2 2 2 2
—w*My+ —w*My+y+2 —7y5]1=0, (51
aE) 2Q 1y o ra i s (—@*Mg+Y)[(—0*Mg+y+2yp)°— yp] (51
JE— = — JE— —e D
ar |, r3 Ao 2)\2 where
aZV D aZV D
Noting that Yo= 2 = (52
9Z2 922
2
P x= Mdd— SX. (4 Thus we obtain the three characteristic frequencies of oscil-
I 27 lations in the vertical chain of three dust grains
and settin Y 1 1
’ o wi=go WBSgL(rEro) @3=g (3.
8X;= 8Xge (@t~ ko), (48 (53
we obtain the dispersion relation for the longitudinal oscilla-Here, the first frequency corresponds to all three particles
tion as moving together with equal amplitudes, and the second and
third frequencies correspond to different relations between
, 202 o rg ) ;{ fo) 'n2( kro) phases and amplitudes of the particle vibrations.
= —+—|exg — —|sin| —|,
Mar§\ Ao 233 o V. CONCLUSIONS

49 In summary, we have derived the semiclassical interaction
which agrees with the equation derived by Melahtgahe  Hamiltonian for the ensemble of dust particles in a plasma.
Green’s function methofiL6]. The Hamiltonian describes the effective potential produced

Next consider the case of a one-dimensional vertical chaiby a pair of moving dust grains due to their interaction with
when particles are placed one above another. A vertical equthe external fields, Debye-ldkel screening potential, and
librium of N particles will be established in the chain. Re- the exchange of virtual phonons in the ion flow. It is shown
cently the vertical chain of dust particles has been observethat the wake potential will vanish if one of the pair of dust
in the experiments if20]. The vertical motion in the vertical particles is stationary with respect to the ambient plasma.
arrangement of three dust particles separated by the equé@ihe Hamiltonian is also applied to oscillations in a coupled
distance is, taking only nearest-neighbor interactions and asystem of dust particles, and characteristic frequencies of

suming no ion flows, described by both longitudinal and transverse modes are derived.
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